Relations between subsurface damage depth and surface roughness of grinded fused silica
نویسندگان
چکیده
منابع مشابه
Relations between subsurface damage depth and surface roughness using the Abbott Firestone curve
Subsurface damages (SSD), which are introduce during grinding process of optical components for high power lasers applications, act as initiator for laser damage and are responsible of the low lifetime of these components. The knowledge of the SSD depth is essential to remove the damaged layer of the optical component during the last finishing step of grinding. However, existing methods to meas...
متن کاملThe Distribution of Subsurface Damage in Fused Silica
Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present...
متن کاملArresting UV-Laser Damage in Fused Silica
26 LLE Review, Volume 77 Deciding when to replace spot-damage-afflicted fused-silica optics or, in the case of inaccessible, space-based lasers, predicting the useful service life of fused-silica optics before catastrophic, pulsed-laser-driven crack growth shatters a part has recently become simpler. By empirically deriving a rule for laser-driven crack growth in fused silica as a function of t...
متن کاملDepth Profiling of Polishing-Induced Contamination on Fused Silica Surfaces
Laser-induced damage on optical surfaces is often associated with absorbing contaminants introduced by the polishing process. This is particularly the case for W optics. In the present study, secondmy ion mass spectroscopy (SIMS) was used to measure depth profiles of finishing-process contamination on fused silica surfaces. Contaminants detected include the major polishing compound components (...
متن کاملImpact of two CO(2) laser heatings for damage repairing on fused silica surface.
CO(2) laser is an interesting tool to repair defects on silica optics. We studied UV nanosecond laser-induced damage in fused silica after CO(2) laser heating. The localization of damage sites and the laser damage threshold are closely related to stress area in silica induced by heating. By applying a suitable second laser heating, we managed to eliminate the debris issued from redeposited sili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2013
ISSN: 1094-4087
DOI: 10.1364/oe.21.030433